SOCP Trajectory Optimization Documentation

The key functionality is the primal SOCP solver for Trajectory Optimization.

The SOCP trajectory optimization problem is formulated as follows.

\[\begin{aligned} \underset{x_{1:N}, u_{1:N-1}}{\text{minimize}} \quad& \frac{1}{2} (x_N - x_{N, ref})^\top Q (x_N - x_{N, ref}) + \\ & \frac{1}{2} \Sigma_{n = 1}^{N-1} (x_n - x_{n, ref})^\top Q (x_n - x_{n, ref}) + (u_n - u_{n, ref})^\top R (u_n - u_{n, ref})) \\ \text{subject to} \quad& x_{k + 1} = A x_k + B u_k + C \\ & H [x; u] ≤ h \\ & ||u_k|| ≤ u_{max} \end{aligned}\]

Table of Contents:

TrajOptSOCPs.TrajOptSOCPsModule
TrajOptSOCPs

A native Julia library to solve trajectory optimization problems that contain second-order cone constraints.

Author: Daniel Neamati (Summer 2020)

Advisor: Prof. Zachary Manchester (REx Lab at Stanford University)

Funding graciously provided by Caltech SURF program and the Homer J. Stewart Fellowship.

source